A biobjective method for sample allocation in stratified sampling
نویسندگان
چکیده
The two main and contradicting criteria guiding sampling design are accuracy of estimators and sampling costs. In stratified random sampling, the sample size must be allocated to strata in order to optimize both objectives. In this note we address, following a biobjective methodology, this allocation problem. A two-phase method is proposed to describe the set of Pareto-optimal solutions of this nonlinear integer biobjective problem. In the first phase, all supported Pareto-optimal solutions are described via a closed formula, which enables quick computation. Moreover, for the common case in which sampling costs are independent of the strata, all Pareto-optimal solutions are shown to be supported. For more general cost structures, the non-supported Pareto-optimal solutions are found by solving a parametric knapsack problem. Bounds on the criteria can also be imposed, directing the search towards implementable sampling plans. Our method provides a deeper insight into the problem than simply solving a scalarized version, whereas the computational burden is reasonable.
منابع مشابه
Stratified Median Ranked Set Sampling: Optimum and Proportional Allocations
In this paper, for the Stratified Median Ranked Set Sampling (SMRSS), proposed by Ibrahim et al. (2010), we examine the proportional and optimum sample allocations that are two well-known methods for sample allocation in stratified sampling. We show that the variances of the mean estimators of a symmetric population in SMRSS using optimum and proportional allocations to strata are smaller than ...
متن کاملFast integer-valued algorithms for optimal allocations under constraints in stratified sampling
In stratified random sampling, minimizing the variance of a total estimate leads to the optimal allocation. However, in practice, this original method is scarcely appropriate since in many applications additional constraints have to be considered. Three optimization algorithms are presented that solve the integral allocation problem with upper and lower bounds. All three algorithms exploit the ...
متن کاملInteger programming formulations applied to optimal allocation in stratified sampling
The problem of optimal allocation of samples in surveys using a stratified sampling plan was first discussed by Neyman in 1934. Since then, many researchers have studied the problem of the sample allocation in multivariate surveys and several methods have been proposed. Basically, these methods are divided into two classes: The first class comprises methods that seek an allocation which minimiz...
متن کاملAsymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria
We extend the method of adaptive two-stage sequential sampling toinclude designs where there is more than one criteria is used indeciding on the allocation of additional sampling effort. Thesecriteria, or conditions, can be a measure of the targetpopulation, or a measure of some related population. We developMurthy estimator for the design that is unbiased estimators fort...
متن کاملVariance-Optimal Offline and Streaming Stratified Random Sampling
Stratified random sampling (SRS) is a fundamental sampling technique that provides accurate estimates for aggregate queries using a small size sample, and has been used widely for approximate query processing. A key question in SRS is how to partition a target sample size among different strata. While Neyman allocation provides a solution that minimizes the variance of an estimate using this sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 177 شماره
صفحات -
تاریخ انتشار 2007